The handshake lemma, also known as the handshaking theorem, is a basic result in graph theory that relates the sum of the degrees of the vertices in a graph to the total number of edges in the graph.
Formally, the handshake lemma states that the sum of the degrees of all the vertices in a graph is equal to twice the number of edges in the graph. In other words, if G is a graph with n vertices, and e edges, then
∑(deg(v)) = 2e
Where deg(v) is the degree of vertex v in the graph.
The handshake lemma is a fundamental result that is often used in graph theory proofs and can be applied to many different types of graphs. It is named after the concept of a handshake, where each edge "connects" two vertices in the graph, similar to how a handshake involves two people.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page